Zero trust architecture has established itself as a highly recognized method of safeguarding both on-premises systems and the cloud in response to the exponential rise in ransomware and other cyber threats. In example, although only 51% of EMEA IT and security professionals said they were confident implementing zero trust in 2019, that percentage increased noticeably to 83% in 2022.
The implicit trust that is placed in internal network traffic, people, or devices is eliminated by a zero trust architecture, to put it simply. Businesses can increase both productivity and security with this defense / defense in depth approach to security.
For businesses, implicit confidence in the technology stack can be a major problem. IT teams frequently struggle to put the right trust controls in place because they typically assume that the company owns the system, that all users are employees, or that the network was previously safe. These trust indicators, however, are insufficient. Organizations are becoming more exposed to risk as a result of trust built on assumptions. These careless measurements of trust can be utilized by threat actors against a company to facilitate network intrusion and data breaches.
A zero trust framework gets rid of any implicit trust and instead determines whether a company should grant access in each specific situation. It is more crucial now that bring-your-own-device (BYOD) initiatives have become so popular due to the rise of remote and hybrid working.
To increase the effectiveness of metric, event, log, and trace-based monitoring and observability tools and reduce risk, deep observability is the addition of real-time network-level intelligence. With it comes more insight to strengthen a company’s security posture since deep observability enables security professionals to examine the metadata that threat actors leave behind after evading endpoint detection and response systems or SIEMs. Therefore, it is essential to support a thorough zero trust strategy.
In the end, zero trust’s primary objective is to identify and categorize all network-connected devices, not only those that have endpoint agents installed and functioning, and to tightly enforce a least-privilege access policy based on a detailed analysis of the device. This cannot be done for devices or users that you can not access.